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SUMMARY 
A control-volume-based solution of the complete set of Navier-Stokes equations for the laminar, 
three-dimensional developing flow in straight, eccentric, cylindrical annular ducts is described. Numerical 
results for velocity and pressure development, pressure defect and entrance lengths are presented for a wide 
range of duct parameters, i.e. relative eccentricity E and radius ratio y. The present results match very well 
with earlier numerical solutions for the limiting cases of developing flow in concentric ducts and fully 
developed flow in eccentric ducts. Comparison with earlier approximate results for developing flow in 
eccentric ducts indicates that the approximate model predicts the velocity and pressure development with 
an error of about 10%. However, the development length predicted by the approximate model is grossly 
in error. The pressure defect and development length in eccentric ducts are very high compared with their 
counterparts in concentric ducts. The pressure defect, development length and maximum velocity increase 
with the radius ratio for eccentric ducts, while the reverse is true for concentric ducts. Also, the apparent 
friction factor decreases as the eccentricity increases. 
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1. INTRODUCTION 

Eccentric annular ducts are occasionally used as fluid flow and heat transfer devices. The 
eccentricity may stem from design constraints or as a result of deformation in service from the 
nominally concentric configuration. The flow characteristics for an eccentric duct are far different 
from those for a concentric duct.' There is therefore a need for detailed analysis of the flow 
development in eccentric ducts. 

Wilson2 was perhaps the first to report a hydrodynamic entrance region solution for eccentric 
ducts. He solved a linearized version of the governing equations leading to a two-dimensional 
eigenvalue problem. However, the analytical expressions containing the solution were not 
e v a l ~ a t e d . ~  Later Feldman et aL3a4 reported a numerical solution for developing flow and 
temperature based on an approximate flow model. Their model assumes a relation between the 
cross-stream velocity components based on an idealization of the cross-stream flow. This 
idealization is not really valid in the presence of recirculation zones within the developing flow 
in an eccentric annulus. The effects of these recirculations on the main flow characteristics cannot 
be assessed by any simplified model. A complete solution of all three momentum equations 
along with the continuity equation is the only option. Also, Feldman et aL3 provided a solution 
only for E > 0 5  and y > 0.5. The objective of this study is to provide a complete solution for 

CCC 0271-2091/94/180493-20 
0 1994 by John Wiley & Sons, Ltd. 

Received December 1993 
Revised March 1994 



494 K. VELUSAMY AND V. K. GARG 

the problem of three-dimensional flow development in eccentric annular ducts for a wide range 
of duct parameters. 

A literature survey indicates that no complete solution for flow development in eccentric 
annuli is available (see e.g. Reference 5 and similar earlier surveys). Recently Sathyamurthy et 
aL6 and Choudhury and Karki’ reported numerical results for mixed convection in eccentric 
annuli but for fully developed flows. 

2. ANALYSIS 

Consider an incompressible, Newtonian fluid entering a straight eccentric annulus. We assume 
negligible body forces and laminar flow with constant properties. In conformity with existing 
developing flow solutions in straight ducts, momentum diffusion in the axial direction is neglected 
in comparison with that in the cross-stream direction. This assumption renders the governing 
equations parabolic in the axial direction. We use bipolar co-ordinates (5 ,  q, z) as shown in 
Figure 1. This co-ordinate system consists of an orthogonal family of circles in a plane, translated 
in the third (axial here) direction normal to the plane. The family of q = const. circles is 
represented by 

(x - a coth q)2 + y 2  = a’ cosech2 q for - 00 < q < 00, 

where a is the positive pole of the bipolar co-ordinate system located on the x-axis. The family 
of t = const. circles is represented by 

x2 + ( y  - a cot <)2 = a’ cosec2 t for 0 < t < 277. 
The geometry of the eccentric annulus is characterized by two dimensionless parameters, the 
radius ratio y = ri/ro, and the relative eccentricity E = e/(ro- Ti). 

The normalized equations for conservation of mass and momentum are’ 

i a  aw 
H Z  a t  ~2 aq az 
- _  a ( H U ) + - - ( H I / ) + - = = ,  

i a  a i a  
~2 at ~2 a? az ( H U 2 ) + -  - ( H U V )  + _ _  

2 a u a H  2 a u a H  v a 2 H  
H aq ay H a t  aq H ( ag2 zqy)] + 
_ _ - _ _  ---- -+- 

( U  
- V ”>. at (2b) 

The integral form of the continuity equation at any duct cross-section is 
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Figure I .  Bipolar co-ordinate system 

In equations (2aH2c) the pressure field P ( ( ,  q, 2) has been split into two parts such that 

P(5, q,  Z) = m) + p(c, 9). 

This approximation has been used extensively for parabolic confined flows. 

boundary conditions are 
Owing to symmetry, only half the duct needs to be considered for the analysis. Hence the 

av aw U = - = ~ = 0 along 5 = 0, I[ for q, < q < qi and all Z, 
a5 a5 

U = V = W = 0 along q = qi,  q, for 0 < < < n and all Z, 

U = V = P = O  and W = l  a t Z = O  fo ra l l candq .  
(4) 

- 

Equations (1x4) form a complete set of equations for the three components of velocity and 
two parts of pressure. The pressure defect K at any axial location is given by 

where (dP/dZ), is the pressure gradient for fully developed flow in the duct. 

3. SOLUTION 

The complete set of non-linear, interlinked partial differential equations is solved by the 
control-volume-based discretization method.' The discretization equations are given in Appen- 
dix 1. The solution at any axial marching location is obtained in two stages. The first stage 
contains the solution for the axial velocity component and duct average pressure from equations 
(2c) and (3). The second stage contains the solution for the cross-stream velocity components and 
deviational pressure from equations (I), (2a) and (2b). At any axial marching location these two 
stages are repeated sufficiently to account for non-linearity and interlinkage of the equations. 
The procedure adopted for the solution is a modified form of Patankar and Spalding's method" 
for parabolic flows. The major modifications include (i) use of the SIMPLER algorithm' for 
resolving the cross-stream pressure-velocity coupling and (ii) use of Raithby and Schneider's 
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method' for evaluating the axial pressure gradient. During discretization of the governing 
equations the convection and diffusion fluxes are combined using the power law scheme.' 

The discretization procedure yields a set of algebraic equations for each variable. The 
pentadiagonal system of algebraic equations for each variable is solved by a plane-by-plane 

This method is an extension of the Thomas algorithm for the tridiagonal system 
of equations. Convergence at any marching step is assumed once the absolute sum of the residue 
R, corresponding to the variable 4 in the discretization equation is less than 6, where 

n, 

R,  = C Iri+t. 
i= 1 

The value of b is taken to be 5 x for the axial 
momentum and integral continuity equations. No significant change in the results was observed 
when the value of b for the cross-stream equations was reduced to 

Results were first obtained on two grid patterns, one coarse and the other fine. For the coarse 
grid a non-uniform grid pattern of 13 x 15 (in the 5- and q-direction respectively) was adopted 
in the cross-stream plane and results were obtained for the entire development length. For the 
fine grid a non-uniform grid pattern of 22 x 25 was adopted in the cross-stream plane and 
again results were obtained for the entire development length. The maximum difference in the 
maximum axial velocity, duct average pressure and pressure defect for the two grids was found 
to be less than 3%. However, the difference in the development length was about 10%. Hence 
the solution for the entire developing region was again obtained with a grid pattern of 28 x 38 
for a particular case of E = y = 0.5. The difference between the two fine grid solutions was found 
to be less than 1% in all quantities except in the development length for which it was about 
3%. Thus the grid pattern of 22 x 25 was assessed to be satisfactory and was adopted for the 
results presented here. It may be pointed out that grids were packed near the duct walls where 
large velocity gradients exist. 

were used near the duct inlet. As the flow 
developed, the step size was gradually increased. It was necessary to use a smaller axial step 
size for a higher eccentricity in order for the solution to converge within a prescribed number 
of iterations at every marching step. The maximum number of axial steps used was about 9360 
for the case of E = y = 0.8. The minimum number of axial steps was 175 for the case of E = 0.001 
and y = 0.4. It was also found that refinement of the cross-stream grid leads to an increase in 
the number of axial steps required for solution. 

Relaxation factors in the range 02-0.6 were used for solution. The number of iterations 
between the two stages of solution at each axial step was kept at six. However, reducing this to 
three produced only negligible change in the solution. The flow was taken to be fully developed 
once the maximum velocity W,,, reached 99% of the fully developed value. Developing flow 
solutions were obtained for 10 different eccentric configurations covering a wide range of 
parameters, y = 0.1, 02,  0.5 and 0 8  and E = 02,  03, 0.8 and 09. Moreover, developing flow 
solutions for five concentric configurations (y = 0-1, 02,  0.4, 0 5  and 08)  were obtained for the 
sake of comparison. The value of E for a concentric configuration was taken as 0901, since the 
co-ordinate transformation is singular for E = 0. 

for the cross-stream equations and 

In the axial direction very fine grids of size 

4. ACCURACY 

In order to validate the computer programme, the problem of fully developed flow in eccentric 
annuli was analysed first. The fully developed values of friction factor are compared against the 
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Table I. Values of 100% developed pressure gradient (= 21 Re) 

& 

Y 0.00 1 0-2 0.5 0.8 0.9 

0.8 47.769 
(47.960) 

0.5 47.460 
(47.626) 

0.4 47.301 
(47.356) 

0.2 46096 
(46.1 76) 

0.1 44.634 
(44.686) 

45.079 34.796 24,523 
C45.2621 [ 34.960) C24.6081 
44.968 35.193 25.493 

C45.0821 C35.3421 c25.5 lo] 

44.1 38 36.365 28441 
C44.1861 [ 36.3941 C28.3621 

28.789 
C28.5601 

Key: ( ), analytical solution (Reference 1, p. 286); [ 1, analytical solution of Tiedt reported in Reference 1, p. 326. 

Table 11. 100% developed W,,, 

E 

Y 0.00 1 0.2 0.5 0 8  0.9 

0.8 1 .SO03 2.029 2.430 2.453 
(1.501) 

0.5 1.5055 2.01 1 2.372 2.350 
( I  .508) C2.3731 

0.4 1.5144 
(1.513) 
[ 1.51 61 

(1.537) 

(1367) C2.1521 

0.2 1.5383 1.956 2.218 2.183 

0.1 1.5689 2.075 

[2.076]* 

Key: ( ), analytical solution (Reference 1, p. 286); [ 1, solution of Feldman et d3; [ 1’. solution of Feldman et al.’ with 
fine grid. 

analytical results of Tiedt (reported in Reference 1) in Table I. Clearly the maximum difference 
is only 0 8 % .  This comparison also justifies the adequacy of the grid size in the cross-stream 
plane. Next the problem of flow development in concentric annular ducts was solved and 
compared with the results available in the literature, as shown in Tables I and 11. It is clear that 
the present results match the analytical results almost exactly. The maximum difference in friction 
factor is 04% and that in W,,, is less than 0.2%. Shown in Table I11 are the present values of 
development length in concentric ( E  = 0.001) annuli compared against the numerical values of 
Roy14 for various values of y. It may be noted that for all values of y except y = 0.2 the present 
results match those of Roy very well, the maximum difference being 3.5%. For y = 0.2, however, 
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Table 111. Development length 

E 

Y 0-00 1 0.2 0-5 0 8  0-9 
~~ 

0.8 0.01 196 0.1310 0.2064 02659 

0-5 0.01 226 0.1177 0.1478 0.0978 
(0.0 1 2 1) [0254] 

0.4 0.0 1 24 
(0.01 28) 

0.2 0.0 1 48 0.0905 0.0886 0.0835 
(0.01 58) 

0.1 0.01 83 0.072 

(0.01 13) 

(0.0 1 80) [O. 1061 

Key: ( ), solution of Roy’4 reported in (Reference 1, p. 288); [ 3. solution of Feldman et d3. 

Table IV. Pressure defect at 99% flow development 

E 

Y 0001 0 2  0.5 0.8 0.9 

0 8  0.6582 1.0782 2,0424 2.1824 

0.5 06694 1.0544 1.928 1.9382 

0.4 0.694 
(0.672) 
C0.7 141 

0 2  0.7164 0.9976 1.603 1 1.591 
(0.7 14) 

0.1 0.777 1.4256 
(0-766) c1.5711 
(0.784)* 

(0.650) 

(0.688)* c2.1443 

Key: ( ), solution of Sparrow and Lin” reported in (Reference 1, p. 288); ( )*, solution of Liu16 reported in Reference 1, 
p. 288; [ ]* solution of Feldman et d3. 

the difference is about 6%. Shown in Table IV are the present results for pressure defect compared 
against similar results of Sparrow and Lin” and Liu16 for concentric annuli. The present results 
deviate from those of References 15 and 16 by about 3%. The present results for the development 
of axial velocity in a concentric annulus of radius ratio 0-1 are compared with the numerical 
values of Sparrow and Lin” in Figure 2. Clearly the comparison is very good in the entire 
development region. 
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Figure 2. Development of axial velocity (y = 01, E = 0.001) 

5. RESULTS AND DISCUSSION 

The developing flow results are presented in the following form: 

(i) development of maximum axial velocity component W,,, along the flow (axial) direction 
(ii) development of duct average pressure and pressure defect along the axial direction 

(iii) iso-axial-velocity-component contours at various cross-sections of the duct along the flow 

(iv) cross-stream flow field at various duct cross-sections. 
direction 

5.1. Development of W,,, 

The developing W,,, is shown in Figures 3(a) and 3(b) for various values of eccentricity E 

and radius ratio y. The maximum velocity increases continuously as fluid is ejected out of the 
boundary layers developing near the duct walls. The increase is also due to ejection of fluid 
from the narrow portion of the duct towards the wider portion. The value of W,,, is considerably 
higher for eccentric ducts than for concentric ducts and this is true for all values of the radius 
ratio. It is due to the non-uniformity associated with eccentric annuli and the resulting 
confinement of the fluid within a relatively smaller cross-section. 

The fully developed values of W,,, are given in Table I1 for various values of E and y. For a 
high radius ratio such as y = 04, W,,, increases continuously with E.  However, for smaller values 
of y such as 0.5 and 0.2, W,,, displays a maximum at about E = 0.5. For concentric ducts 
( E  = 0001) it can be seen from Table I1 that W,,, decreases slightly as the radius ratio increases. 
However, for eccentric ducts W,,, increases with the radius ratio for any value of E. Also, this 
increase is higher for higher values of E. 
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Figure 3(a). Development of axial velocity ( y  = 0.1 and 0.8) 
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Figure 3(b). Development of axial velocity ( y  = 0 2  and 0 5 )  
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The value of W,,, predicted by Feldman et al.’ for E = 0.9 and y = 0.1 using the simplified 
model is also shown in Figure 3(a). It can be observed that the simplified model underpredicts 
W,,, at small 2-values and overpredicts it at large 2-values. One of the reasons for this 
overprediction is the uniform grid size employed in the (-direction by Feldman et af. As the 
eccentricity increases, the bipolar co-ordinate system concentrates grids in the narrow part of 
the annulus with sparser grids in the wider part of the annulus. The fully developed W,,, 
predicted by Feldman et al. for E = 0-9 and y = 0.1 is 2.152 with a grid pattern of 24 x 32 and 
2.076 with a grid pattern of 48 x 32. The present value of W,,, is 2.075 with a grid pattern of 
only 21 x 21 owing to the use of a non-uniform grid that is dense near the walls and coarse 
away from the walls. 

5.2. Development of axial duct pressure 

The development of duct average pressure P ( 2 )  is shown in Figures 4(a) and qb).  It may 
be mentioned that P ( Z )  = 2 fpppRe 2. Clearly P ( 2 )  is a strong function of E but only a weak 
function of y. For a substantial part of the entrance length the value of fappRe decreases with 
an increase in E. This is due to the fact that as E increases, the effective participation of the duct 
walls (especially the inner wall) in shearing the fluid decreases. In Figures 4(a) and 4(b) the 
development curves corresponding to concentric ducts ( E  = 0.001) are of shorter length and 
coincide with those for E = 02.  Also, in a small region close to the duct inlet the value of fappRe 
for an eccentric duct is nearly the same as that for a concentric duct. 

5.3. Development of pressure defect 

The developing pressure defect K for various values of E and y is shown in Figures 5(a) and 
5(b). It can be observed that in the developing region K increases with E for all values of y. Also, 
the pressure defect for an eccentric duct is relatively larger than that for a concentric duct. The 
numerical value of K at 99% of flow development is shown in Table IV. From this table it is 
clear that for concentric ducts the pressure defect decreases with an increase in y. However, for 
eccentric ducts the reverse is true. Also, for a fixed radius ratio the increase in K with E is 
considerable only up to E = 0.5, while for E > 0.5 the change in K is small. Comparing with 
concentric ducts, the pressure defect is considerably high, as much as 50% more for mildly 
eccentric ducts (E  = 0.2) and as much as 200% more for highly eccentric ducts ( E  > 0.5). One of 
the reasons for such high values of K in eccentric ducts is the energy required to support 
the circumferential flow (ejected from the narrow part of the annulus to the wider part) 
and its associated recirculation in the duct. These are absent in a concentric duct. Moreover, 
for a fixed radius ratio the total momentum of the fluid entering the duct is the same for both 
concentric and eccentric ducts. When the flow attains full development, however, the velocity 
profile in an eccentric duct is more non-uniform than that in a concentric duct. Thus the total 
momentum of the fluid at  full development is higher in an eccentric duct than in a concentric 
duct. This disparity in momentum is the other reason for higher values of K in eccentric 
ducts. 

The developing pressure defect predicted by Feldman et al. ’ for two eccentric duct configura- 
tions, namely E = y = 0 5  and E = 0.9 and y = 01,  is also shown in Figures 5(b) and 5(a). It is 
clear that the results of Feldman et al. compare reasonably well with the present results in the 
region close to the inlet. However, away from the inlet Feldman’s approximate model over- 
predicts K by about 10%. 
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Figure +a). Development of p(y = 0.1 and 0.8) 
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Figure qb). Development of p(y = 0.2 and 0.5) 
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Figure 3a). Development of pressure defect (y = 01 and 08)  
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Figure yb). Development of pressure defect (y = 0 2  and 0 5 )  
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5.4. Entrance length 

The flow development lengths in concentric and eccentric ducts are given in Table I11 for 
various values of E and y. Clearly the flow development length in an eccentric duct is very high 
compared with that in a concentric duct. For example, the ratio of development length in an 
eccentric duct to that in a concentric duct is about 22 for E = y = 0 8  and about six for E = y = 0.2. 
The reason for this increased flow development length in eccentric ducts is the length required 
to transport fluid from the narrow part to the wider part of the annulus. This is absent in a 
concentric duct. Another interesting feature is that for the parameters studied, the development 
length is maximum when E = y. 

It is clear from Table I11 that the development length in the case of concentric ducts decreases 
with an increase in radius ratio. However, the reverse is true in the case of eccentric ducts for 
all values of eccentricity. The flow development lengths predicted by Feldman et aL3 for two 
duct configurations are also given in Table 111. Clearly the approximate model of Feldman et 
al. overpredicts the flow development length considerably. 

5.5. Development of axial velocity component 

The iso-axial-velocity-component contours at different axial locations are shown in Figures 
6(a)-6(c) for some selected eccentric duct configurations. It is seen that at  the smallest value of 
Z( ~ 0 9 0 1 5 )  the potential core region (engulfed by the W = 1.2 contour) is large and the viscous 
boundary layer region (between the W = 1.2 contour and the duct walls) is small. As the flow 
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Figure @a). Iso-axial-velocity contours ( y  = 0 5 .  E = 0 8 )  
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Figure qb). Iso-axial-velocity contours ( y  = 0.2. E = 08) 
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Figure qc). Iso-axial-velocity contours (y = 0 2 .  E = 05) 
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develops, the potential core region shrinks and moves towards the wider part of the annulus, 
while the boundary layer region increases. Also, as the flow develops, the velocity in the core 
increases owing to the efflux of fluid from the developing boundary layers and from the narrow 
part of the annulus. In Figures 6(a)-6(c) the largest value of Z corresponds to the 99% developed 
condition. 

At small values of Z the contours are packed near the duct walls (especially in the narrow 
part of the annulus) and become increasingly sparse as the flow develops. This indicates high 
shear near the inlet. Also, for a fixed value of y ,  the higher the eccentricity, the smaller is the 
value of W in the narrow part of the annulus. 

5.6. Cross-stream jlow jield 

The cross-stream flow field at different axial locations is shown in Figures 7(a)-7(c) for some 
eccentric ducts. In these figures the length of the arrows is proportional to the magnitude of the 
cross-stream velocity except for arrows marked with an x . The scale of this vector plot is shown 
at the top of the figures. These figures show clearly that the fluid ejected out of the narrow part 
of the annulus flows transversely towards the wider part. Also, fluid is ejected out of the boundary 
layers developing over the duct walls. The strength of the cross-stream flow reduces as the main 
flow develops, as indicated by smaller-sized arrows. 

Referring to Figures 7(a) and 7(b) representing highly eccentric ducts, the transverse flow is 
quite similar to cross-flow over a cylinder represented here by the inner tube. The transverse 
flow originating in the narrow part of the annulus near the duct inlet (lowest 2-value) separates 
from the inner tube at some point and induces a recirculation. The same transverse flow creates 
another recirculation near the outer wall as well. These recirculations persist even in planes far 

- 18 W I T  C Scale > 

M I , ,  , 

Figure 7(a). Cross-stream flow field ( y  = 0.5, E = 0.8) 
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- 10 UNIT C Scale ) 

Figure 7(b). Cross-stream flow field ( y  = 0-2, E = 0 8 )  

- 10 UNIT C Scale ) 

Figure 7(c). Cross-stream flow field ( y  = 02,  E = 05) 
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away from the duct inlet. Clearly these recirculations depend on the eccentricity as well as the 
radius ratio. From Figures 7(a) and 7(b) it is clear that for a fixed E, the larger the value of y ,  the 
wider are the zones of recirculations and the longer is the axial length over which recirculations 
persist. 

Referring to Figure 7(c) corresponding to E = 0.5 and y = 0.2, it is clear that there is no 
recirculation near the outer tube. However, there is a recirculation near the inner tube but its 
extent is very small. Comparing Figures 7(b) and 7(c), we find that for a fixed radius ratio the 
extent of recirculation increases with the eccentricity. The approximate model of Feldman et 
af. ’ cannot support these recirculations. Even in the absence of recirculation, Feldman’s model 
is only approximate in estimating the actual cross-stream flow. However, the values of pressure 
defect predicted by Feldman et al.’ for two geometries, namely E = y = 0 5  and E = 0.9 and 
y = 0.1, do not differ much from the present results. One of the reasons for this fortunate 
comparison is that for these two cases there is no recirculation beyond Z x 0-002 and even at 
locations Z < 0.002 the recirculation zone is very small. The absence of recirculation is because 
of relatively small eccentricity in the case of E = y = 0-5 and very small radius ratio in the case 
of E = 0.9 and y = 0.1. Whereas the approximate model of Feldman et al.’ can predict K well 
for geometries with no recirculation zones, it cannot predict the development length correctly 
for any geometric configuration. 

6. CONCLUSIONS 

The problem of laminar, three-dimensional flow development in the entrance region of eccentric 
cylindrical annuli has been solved using the complete set of Navier-Stokes equations. Results 
have been obtained for a wide range of duct parameters. By comparing the present solution 
with an earlier approximate model, the validity and degree of approximation in the earlier model 
are assessed. Also, the flow development parameters in eccentric and concentric ducts are 
compared. The following conclusions are drawn based on this analysis. 

(i) The maximum axial velocity in eccentric ducts is high compared with that in concentric 
ducts. W,,, increases with the radius ratio in an eccentric duct but decreases in a concentric 
duct. 

(ii) The product .JappRe is a strong function of eccentricity but a weak function of radius ratio. 
It decreases as the eccentricity increases. 

(iii) The total pressure defect in an eccentric duct is very high compared with that in a 
concentric duct. This is due to a gain in the momentum of the fluid and to cross-stream 
recirculations associated with eccentric ducts. The pressure defect increases with the radius 
ratio in an eccentric duct but decreases in a concentric duct. The approximate model of 
Feldman et al.’ overpredicts the pressure defect by about 10%. 

(iv) The flow development length in eccentric ducts is very high compared with that in 
concentric ducts. In eccentric ducts the development length increases with the radius ratio, 
while the opposite is true for concentric ducts. The approximate model of Feldman et 
al. ’ overpredicts the development length considerably. 

(v) The transverse flow from the narrow part of the annulus to the wider part induces 
recirculations around the inner and outer walls of the annulus. The extent of these 
recirculating zones increases with eccentricity and radius ratio. 
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Figure 8. Staggered grid lay-out 

APPENDIX I 

The discretization equations are derived by integrating the governing partial differential 
equations over their respective control volumes. The control volumes corresponding to the 
cross-stream velocity components U and V are staggered in their respective directions [ and q 
as shown in Figure 8. 

Integration of the [-momentum equation (2a) over the control volume surrounding point ‘e’ 
in Figure 8, i.e. over the control volume extending from rp to tE, from qsc to qnC, and from Z, 
to Zd (where subscripts ‘u’ and ‘d’ denote upstream and downstream locations respectively), 
yields 

(JE - Jp) + (Jne - Jse) + (Jd, - JUc) = ( P p  - P;)RAqAZ + S;, ( 5 )  

where the fluxes J are given by 

J,, = ( H V U  - g) AtAZ, 
nc 
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and the source term & is given later. Integration of the continuity equation (I)  over the same 
control volume, multiplication by U , ,  and subtraction from equation ( 5 )  yields 

(JE - FE uc) - (JP - FPUA + (Jne - Fne ue) - ( J s e  - Fse ue) 
+ ( J d c  - F,, u,) - (Jut - F,, U,)  = (Pp - P,)RAqAZ + S;, (6) 

where the Fs are defined later. From the generalized formulation for combining the convective 
and diffusive fluxes (Reference 9, p. 99), equation (6) reduces to 

a, U ,  = ace U,,  + a, U ,  + aNC Up,, + US, Us, + aUc U,,  + (P6 - PE)RAqAZ + q, (7) 

FE P ,  = -, 
DE 

FP P ,  = -, 
DP 

Fnc 
D n e  ’ 

p =- nc 

Fs, 
Ds, ’ 

p =- 
SC 

and the symbol [ 1 indicates the maximum of the values contained. The definition of the function 
A(IP1) depends upon the scheme used.’ For example, for the upwind scheme A((P1) = 1, while 
for the power law scheme, A(IP1) = [0, (1 - 0.1 IPl)5]. 

Similarly, the discretization equation for q-momentum can be derived by integrating equation 
(2b) over the control volume surrounding point ‘n’ in Figure 8 to yield 

an V, = anE V,, + a,, V,, + a,, V,, + as V,  + a,, V,, + (P, - PN)RAtAZ + q, (8) 

where the coefficients a are similar to those in equation (7) and 
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A similar integration performed on equation (2c) over the control volume surrounding point 
‘P’ in Figure 8 yields 

apWp = aEWE+ awWw+ a,WN+a,Ws+auWup+ &, (9) 

where the coefficients a are similar to those in equation (7) and 

- aP 
Sz = - - az ~ F A ~ A ~ A z .  

The continuity equation (l), upon integration over the control volume surrounding point ‘P’ 
in Figure 8, yields 

[(HU), - (HU),]AqAZ + [(HV), - (HV)JA(AZ = -(Wp - Wup)FA(Aq. (10) 

It may be noted that a fully implicit procedure is adopted in the parabolic Z-direction. Hence 
in equations (7H9) the unknowns without the subscript ‘u’ correspond to the downstream 
2-plane and those with the subscript ‘u’ correspond to the upstream Z-plane. 

APPENDIX 11: NOMENCLATURE 

location of positive pole of bipolar co-ordinate system 
hydraulic diameter, 2(r0 - Ti) 

distance between centres of inner and outer cylinders 
Fanning friction factor for fully developed flow, (dp/dz)Dd2pwz 
apparent Fanning friction factor in flow development region, [Mz) - p(O))/z]D,,/2pwz 
dimensionless scale factor, (a/D,)/(cosh q - cos () 
pressure defect 
number of control volumes in cross-section for variable r#~ 

total dimensional pressure (function of ((, q, z)) 
total dimensionless pressure, p / ( p w z )  
dimensional duct pressure averaged over cross-section 
dimensionless duct pressure averaged over cross-section, p/pwf 
dimensional deviational pressure (function of (t, q)) 
dimensionless deviational pressure, p’D,’ /pv2 
residue of discretized equation for ith control volume for variable 4 
radius of inner cylinder 
radius of outer cylinder 
(r  - ri)/(ro - ri) in Figure 2 
Reynolds number, w,D,,/v 
absolute sum of ri, taken over n, 
velocity component in <-direction 
dimensionless counterpart of u, uDdv 
velocity component in q-direction 
dimensionless counterpart of v,  vDh/v 
velocity component in z-direction 
uniform axial velocity at entrance 
dimensionless counterpart of w, w/w, 
maximum value of W at any duct cross-section 
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x 
y 
z 
Z dimensionless axial co-ordinate, z/D,Re 

cross-stream Cartesian co-ordinate (Figure 1) 
cross-stream Cartesian co-ordinate (Figure 1) 
axial co-ordinate normal to x-y plane 

Greek letters 

6 

Y 
rl 
'li 

rl0 

P 

& 

V 

5 

small number for checking convergence 
relative eccentricity, e/(r,, - r i )  
radius ratio of duct, ri/ro 
bipolar co-ordinate (Figure 1) 
value of q on inner cylinder, cosh-'{[y(l + E ' )  + (1 - .z2)]/2&y} 
value of 1 on outer cylinder, cosh- '{[y(l - E') + (1 + E')]/~E) 
kinematic viscosity of fluid 
density of fluid 
bipolar co-ordinate (Figure 1) 
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